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Abstract
In this chapter, we will review the current state of play in the area of overlap
between learning analytics (LA), specifically data mining and exploratory ana-
lytics, and the field of measurement science. We will review the logic of mea-
surement science, as instantiated through the BEAR Assessment System (BAS),
and illustrate it in the context of a LA example. An example is presented showing
how complex digital assessments can be designed through BAS with attention to
measurement science, while LA approaches can help to score some of the
complex digital artifacts embedded in the design. With that background, we
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suggest ways that the two approaches can be seen to support and complement one
another, leading to a larger perspective. This chapter concludes with a discussion
of the implications of this emerging intersection and a survey of possible next
steps.
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Introduction: Why There Is a Problem

By some accounts, measurement is defined as the assignment of numbers to cate-
gories of observations. The properties of numbers then become the properties of a
measure – such as nominal, ordinal, interval, and ratio (Stevens, 1946). But
assigning numbers to categories is just one feature of measurement. Steps in
measurement science before and after provide a key interpretive context upon
which modern measures are based.

This chapter is about those steps, and how they are necessary when engaging in
exploratory learning analytics, if the goal is to measure. Generating patterns from
data sets through machine learning, for instance, can yield a set of results, i.e., those
specific patterns. But what do these results mean and how can they be used to
measure some underlying variable? This is where the measurement comes in.

In educational assessment, for instance, values on many variables for a student or
a teacher are not manifest, or in other words, they cannot be directly measured such
as one might measure height or eye color. Rather, in learning performances, a set of
evidence is gathered on a “latent” construct. The property of latency means the
element to be measured remains hidden to the observer, until circumstances are
constructed suitable for the manifestation or elicitation of the evidence for the
construct. This elicitation maps back to the construct and forward to interpretation.
Together, these interpretive elements can make the numbers meaningful.

Our thesis is that to believe that the analytics themselves – the assignment of
numbers – is the only or even the main goal of measurement is to miss the point. We
argue that measures take on coherent evidentiary properties, such as validity, utility,
and inferential characteristics, only when the numbers clearly map to a construct, to
its indicators (observations), and to the interpretations around which the claims are to
be made.

Applying learning analytics to educational assessment therefore requires negoti-
ating a key intersection, which is at the interface of measurement technology and
information technology. Here we first discuss both sides of that intersection, starting
with principles of measurement science and moving to learning analytics. Then we
share an example of opportunities that arise when the intersection is successfully
navigated from both sides.
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The Logic of Measurement

Some may say the IT sphere needs to expand its consciousness about measurement.
It is also likely true that traditional measurement science may need to expand its
consciousness about what can, these days, reasonably comprise a data set with
sufficient construct-relevant variance for some measurement claims, albeit the data
structure may be much more complex and incorporate a great deal of more noise and
extraneous elements than one might have attempted to analyze in the past. Informa-
tion technology has made great leaps forward in collecting such data, which will be
discussed in the next section.

First, it is important to understand the logic of measurement. Here we use a
framework that includes four principles of good assessment and measurement
practice. The framework is part of the BEAR (BEAR Center = Berkeley Evaluation
and Assessment Research Center) Assessment System (BAS: Wilson, 2005), which
describes techniques used in the construction of high-quality assessments. A dia-
gram of BAS is shown in Fig. 1. (These four principles also relate to the assessment
triangle developed by the National Research Council Committee on the Foundations
of Assessment and published in their report, “Knowing What Students Know”
(2001).) We begin with a description of the four principles (Wilson, 2005), in the
context of technology-enhanced assessments and learning (Scalise et al., 2007):

• Principle 1: Assessments should be based on a developmental perspective of
student learning.

• Principle 2: Assessments in learning should be clearly aligned with the goals of
instruction.

Fig. 1 A diagram of BAS, shown both the principles and four building blocks of measurement
(Wilson & Sloane, 2000)
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• Principle 3: Assessments must produce valid and reliable evidence of what
students know and can do.

• Principle 4: Assessment data should provide information that is useful to teachers
and students to improve learning outcomes.

Principle 1, a developmental perspective of student learning, means that we
should be considering how student understanding of particular concepts and skills
develops over time, rather than taking a one-shot view. A developmental perspective
requires clear definitions of what students are expected to learn at particular points in
their development, as well as a theoretical framework of how that learning is
expected to unfold as the student progresses through the instructional material.

Traditional classroom assessment strongly supports a developmental perspec-
tive. Here, we affirm what is perhaps the obvious: For diagnostic information to
be diagnostic, it must be collected in relationship to some set of goals about what
is to be learned. Principle 2, establishing a good match between what is taught
and what is assessed, means that the goals of learning and the measurements
and inferences made regarding learning should be related. Reports abound of
teachers interrupting their regular curricular materials to “teach the material”
students will encounter on district- or statewide tests, and this is the antithesis
of Principle 2.

Resnick and Resnick (1992) argued that “Assessments must be designed so that
when teachers do the natural thing – that is, prepare their students to perform well –
they will exercise the kinds of abilities and develop the kinds of skill and knowledge
that are the real goals of educational reform” (pp. 37–76). Diagnostic assessment
approaches that do not match the goals of instruction fail this test.

Principle 3, quality evidence, addresses issues of technical quality in assessments.
By making inferences about students that are supported by evidence for their validity
and reliability, numerous technology-enhanced learning assessment procedures are
gaining “currency” in the educational community. Reliability concerns the repro-
ducibility of results, whereas validity relates to whether an assessment measures
what it is intended to measure. To ensure comparability of results across time and
context, these issues must be addressed in any serious attempt at technology-based
measures.

Principle 4, the value of assessment data to teachers and students, is perhaps the
most critical: Learning assessment systems must provide information and
approaches that are useful for improving learning outcomes. Teachers must have
the tools to use systems efficiently and to explain resulting data and make inferences
effectively and appropriately. Students also should be able to participate in the
assessment process, and they should be encouraged to develop essential
metacognitive skills that will further the learning process. If teachers and students
are to be held accountable for performance, they need a good understanding of what
students are expected to learn and of what counts as adequate evidence of student
learning. Teachers are then in a better position, and a more central and responsible
position, for presenting, explaining, analyzing, and defending their students’ perfor-
mances and outcomes of their instruction.
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Students are better able to develop their own metacognitive skills and to bring
them to bear in the learning process. In addition, learning assessment procedures
should be accessible to teachers to avoid a climate of “black box” assessment, in
which the logic of the assessments and personalization are known only to the
software developers.

These four principles introduce a way to understand the advantages and disad-
vantages of measurement instruments, how to use such instruments, and how to
apply these methods to develop new instruments or adapt old ones (Wilson, 2005).
The four principles relate to four “building blocks” that make up an assessment – the
construct map, the design plan for the items, the outcome space, and the statistical
measurement model or algorithms to be used to compile and analyze patterns in the
data, which can also be seen in Fig. 1.

They also focus our attention on quality control (QC) in the measures. With an
interpretive context such as described by the BAS principles, QC of the measure-
ment properties can rely heavily on the calibrated construct map and review how to
check if scores are operating consistently and how to evaluate the reliability and
validity evidence. This allows the assessment developer to employ a wide variety of
item formats, including traditional questions in selected and constructed response
formats but also behavioral observations, performance tasks, projects, portfolios,
interview protocols, and active process data such as chat streams or click data in
technology-enhanced assessments, when each of these forms of evidence is clearly
designed to elicit observations mapped to be meaningful on the construct.

Relating This Logic to Data Mining and Exploratory Analytics

A commonly used definition of learning analytics that we will draw on here was
proposed by the first International Conference on Learning Analytics and Knowl-
edge (LAK 2011) and adopted by the Society for Learning Analytics Research
(Society for Learning Analytics Research, 2011):

Learning analytics is the measurement, collection, analysis and reporting of data about
learners and their contexts, for purposes of understanding and optimising learning and the
environments in which it occurs.

While this definition is helpful, two additional aspects are important to consider:
the interpretation of results and the choice of appropriate data types and algorithms.
We must underscore the point that, for learning analytics, it is critical to consider the
meaningful interpretation of the data analysis, not simply reporting of the results
(Wilson, 2005; Wilson et al., 2012; Wilson, Scalise, & Gochyyev, 2015).

Yet, interpretation is not directly included in the LAK/SoLAR definition of
“collection, analysis, and reporting.” This weakness in the definition can lead to
the assumption that once results are composed and reported, their meaning for
learners and learning outcomes is self-evident.
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Meaningful interpretation means having an evidentiary framework, such as
described in the four measurement principles above (Wilson, 2005). It must be
designed to connect results clearly and on an empirical basis back to the goals and
objectives of the analysis in order to make clear evidentiary claims about the learner
(Mislevy, Almond, & Lukas, 2003; Wilson & Sloane, 2000). It also means being
able to understand the uncertainty or range and degree of error likely to be present in
the results.

Some groups have begun to establish standards of practice in learning analytics
for twenty-first-century complex data analysis methodologies (Sclater, 2014; Wilson
et al., 2012). In this chapter, we will present an example that helps establish the
coherent evidentiary argument for the learning analytics involved through a frame-
work called a “learning progression.” This framework connects the results to (a) the
data and the learning analytic questions being asked and (b) to the techniques for the
analytics employed.

Other researchers have begun to describe the need for such frameworks when
learning analytics goes beyond data analysis alone and is to be used for predictive
analytics, actionable intelligence, and decision-making (van Barneveld, Arnold, &
Campbell, 2012).

In learning analytics, the need to establish a coherent evidentiary argument to
support claims about learners can be approached either a priori (in advance of the
analysis) or a posteriori (following the analysis). The a priori approach is essentially
a theoretical approach, based on a strong theory or prior empirical information
(or both), and thus might be considered a confirmatory learning analytic technique.
It is also sometimes known as “supervised learning” (Russell & Norvig, 2009), in
which factors, weights, network structures, or other characteristics of the LA learn-
ing algorithms are populated in advance with at least some prescribed characteristics,
derived from prior work or from a theoretical basis.

The a posteriori approach can be considered generative or in other words an
exploratory learning analytic approach and in many cases will need to be confirmed
by a subsequent data collection and analysis. The exploratory approach is sometimes
called by the name “data mining” (Papamitsiou & Economides, 2014) or machine
learning. It can also be known sometimes as “unsupervised learning” (Russell &
Norvig, 2009), in contrast to the supervised learning concept described above in
which models are prepopulated to some extent with theoretical or prior empirical
data. Exploratory approaches can be useful when the desire is to learn more about the
patterns in the data sets in a context where little is yet understood or where new
patterns may become evident that were not suspected before.

The entry point into the learning analytics paradigm then is an option to be
considered when building the evidentiary argument to make claims about learners,
the choice between an exploratory and confirmatory approach, depending on how
much prior theory and/or empirics are available. Put together, these exploratory and
confirmatory stages can be seen as a cycle in the evidence chain, as shown in Fig. 2.
It depicts a simple example of a learning analytics interpretive cycle, where entry
points can be either confirmatory, entering at the “theory or conceptualization” node,
or exploratory, entering at “analysis and results” node for extant data or at the
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“empirical data” node when observations will be designed and collected (see below
for a discussion of extant and collected data).

No single entry point to the cycle is better in every situation. The choice can be
determined by the intended purposes of interpretation and the current state of claims
that can be made in a given context. In any particular situation, one relevant question
to ask is does the analysis begin with an interpretive framework a priori, as in the
theory component of the cycle below, or is interpretation intended to fall a posteriori,
as when even the initial interpretive framework is derived from data because little is
yet known?

In either case, the same cycle is present but with different points of entry and a
different flow to the interacting elements.

Measurement science, then, really encompasses the “whole” thing or all of the
cycle. But it doesn’t truly become measurement until we have some of the confir-
matory evidence that meets high-quality measurement standards – in other words
exploring isn’t enough to claim measurement. In this way, measurement can be seen
in some contexts as a qualitative and quantitative cycle or an exploratory and
confirmatory cycle. Just as for learning analytics, measurement science can be
entered into at different points for a given construct depending on how generative
or emerging of new theory the goal of the measures involves.

In terms of data types for which learning analytics by the LAK/SoLAR definition
is likely to be more useful, in most cases, complex data should be involved. If not,
other simpler techniques might be better employed (Ferguson, 2012). Complex data
can take the form of large data sets (big data), multifaceted data sets, or other
elements in the data that encode more complex patterns (Wilson et al., 2012) or, as
described by Kathleen Scalise, hard-to-measure constructs not readily identifiable
without complex analytic techniques (2012).

interpretation
theory or

conceptualization

analysis &
results

empirical data

Exploratory
entry point

Confirmatory
entry point

Fig. 2 Exploratory and confirmatory evidence chain cycle (Wilson, Scalise, & Gochyyev, pending)
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About the data sets, sometimes these can be preexisting or extant data sets, as
described above. Examples of preexisting data include downloads from Twitter
feeds, click streams in user data, or other online collections that often exist for
another purpose originally (Baker & Siemens, 2014). At other times, data sets are
collected at least in part directly for the purpose of applying learning analytics to the
results. Data collection can include, for instance, an adaptive recommender where
ratings on prior experiences are solicited for the purposes of prediction of respondent
interest in future experiences (Chedrawy & Abidi, 2006; Dagger, Wade, & Conlan,
2005), or evidentiary data collection for educational or professional development, to
address personalized or grouped components to support the learner in educational
assessment (Brady, Conlan, Wade, & Dagger, 2006; Kennedy & Draney, 2006).

An extension to the LAK/SoLAR definition we propose here is specification that
complex analytic techniques are needed to resolve the multifaceted or complex
patterns. The same argument can be made as above for data sets. Complexity should
be introduced in the analysis for a coherent evidentiary argument only when
necessary. For instance, if a simple model that compares dyads of words in a
narrative text stream produces results as good as comparing longer strings or more
complicated relationships, the simpler model is supported (Russell & Norvig, 2009).
So the usual parsimonious definition should be applied when models or other
algorithms are used to fit learner data and resolve patterns.

Finally, it would be helpful if the LAK/SoLAR definition made reference to
algorithms, or characteristics of algorithms, that might be to useful to apply for
aggregating and parsing of patterns, since this is an important consideration in the
use of learning analytics (Papamitsiou & Economides, 2014). While it is important
to keep the definition general to be inclusive of many useful algorithms that might
arise, as a general class, the approach typically needs to involve algorithms to
automatically process the data, assuming the purposes of interpretation and the
complexity of data require algorithmic approaches to the accumulation and parsing
of patterns in the data. Algorithms can be statistical in nature, applied as inferential
statistical tests or to yield inferential indices as part of the processing, which can help
with assessing quality of results (Sclater, 2014).

Numerous algorithms in the form of measurement models have been created and
applied that take a statistical form for learning outcomes. These are well established
in the psychometrics research literature, and some of the advanced models as well as
basic models can be appropriate to apply in learning analytics to complex twenty-
first-century skill settings (Wilson et al., 2012).

Algorithms can also process patterns in more descriptive ways, yielding machine-
readable results such as categorization or subsetting of respondents (Stanton, 2012).
Note that since machine processing is required, however, the data sets at some point
have to include machine-readable data. This may be text based or graphical in nature
or in some other innovative format, depending on the processing requirements of the
algorithm and platform, or the data sets may be numeric (Scalise & Gifford, 2006).
The desired data characteristics may already be present for a given data set in any
particular case or may require preprocessing. This could include types of scoring,
ordering, subsetting, or other types of aggregation. For this, reliable data collection,
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warehousing, and prep can be a problem, so a variety of “cleanup” procedures may
be needed. An important stage in learning analytics is reducing construct irrelevant
variance including noise, user errors, or out-of-scope entry of data, which should be
clarified and validated before conclusions can be drawn (Dringus, 2012).

In light of these sets of clarifications, we have suggested a revision to the
LAK/SoLAR definition, which we propose as “Learning analytics definition,
LAK/SoLAR.v2” (Wilson et al., pending):

Learning analytics is the measurement, collection, analysis, interpretation, and reporting of
data about learners and their contexts, for purposes of understanding and optimising learning
and the environments in which it occurs, by means of a coherent evidentiary argument.
Complexity should be introduced in the data and the analysis only when necessary to the
development of the evidentiary argument.

Complex data will almost always be involved, which can take the form of large
data sets (big data), multifaceted data sets, and/or other the data elements that encode
patterns or hard-to-measure constructs not readily identifiable without advanced
analytic techniques (Russell & Norvig, 2009; Scalise, 2012).

An Example: Synthesis of Measurement Technology and Learning
Analytics

We began this chapter by describing a key intersection for learning analytics at the
interface of measurement technology and information technology. But little has been
said yet about information technology directly. As it turns out, much of the modern
field of learning analytics has derived from the efforts of information technologists to
successfully tackle complexity in data and analysis.

For instance, scalable machine learning for large data sets may take place using
programming scripts in proprietary software or in more open-source solutions such
as R and Python. A variety of distributed machine learning platforms are available
designed for big data that now readily can run on a laptop or even tablet device. Core
machine learning algorithms may be implemented in high-performance program-
ming languages, with acceptable APIs (application programming interfaces) for
interoperability through web interfaces.

Algorithm implementations may be distributed across virtual servers. This can
permit software and analysis to scale for big data sets. When enough computational
resources are available, a variety of algorithms may be employed, as discussed in
other chapters of this handbook, from generalized linear models to gradient boosting
and deep neural nets to dimensionality reduction methods (PCA, GLRM) and
clustering algorithms (K-means). Anomaly detection, for instance, is becoming
important to detect false positives and to improve the feedback within the state
characteristics.

All of these are examples of advances not only in statistics in many cases but also
in information technology. Scientists and engineers have many more solutions to
offer due to the advances being made in IT.
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That said, recall that the thesis of this chapter is that to believe the analytics
themselves – the assignment of numbers, categories, or other sophisticated quanti-
fication or classification – is the only or even the main goal of measurement is to miss
the point of measurement science. Measures take on coherent evidentiary properties,
such as validity, utility, and inferential characteristics, only when the numbers clearly
map to a construct, to its indicators (observations), and to the interpretations around
which the claims are to be made.

So here we arrive at the intersection of measurement technology and information
technology. In the context of applying learning analytics, for instance, to educational
assessment, can the two perspectives work together to achieve a gestalt or more than
the sum of the parts? Next we take up a brief example that attempted to incorporate
both together, in the context of looking at the assessment of collaborative learning in
digital interactive social networks.

The example here is taken from the Assessment and Teaching of Twenty-First
Century Skills project (ATC21S), which was launched in 2009 by three information
technology companies, Cisco, Intel, and Microsoft. An ATC21S project goal was to
employ new analytical approaches in the assessment of learning.

For the ATC21S example, the BEAR Assessment System was applied to
identify a set of distinctive information and communication technology (ICT)
literacy goals for students (BAS: NRC, 2001; Wilson, 2005, 2009; Wilson &
Sloane, 2001). The focus of ICT literacy was on collaborative digital activities,
or learning in networks, which was seen as being made up of four strands of a
learning progression:

• Functioning as a consumer in networks
• Functioning as a producer in networks
• Participating in the development of social capital through networks
• Participating in intellectual capital (i.e., collective intelligence) in networks

The four strands are seen as interacting together in the activity of learning in
networks. They are conceptualized as parallel developments that are
interconnected and make up that part of ICT literacy that is concerned with
learning in networks.

First, functioning as a consumer in networks (CiN) involves obtaining, manag-
ing, and utilizing information and knowledge from shared digital resources
and experts in order to benefit private and professional lives. It involves questions
such as:

• Will a user be able to ascertain how to perform tasks (e.g., by exploration of the
interface) without explicit instruction?

• How efficiently does an experienced user use a device, application, or other ICT
strategy to find answers to a question?

• What arrangement of information on a display yields more effective visual
search?

• How difficult will it be for a user to find information on a website?
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Second, functioning as a producer in networks (PiN) involves creating, develop-
ing, organizing, and reorganizing information/knowledge in order to contribute to
shared digital resources.

Third, developing and sustaining social capital through networks (SCN) involves
using, developing, moderating, leading, and brokering the connectivities within and
between individuals and social groups in order to marshal collaborative action, build
communities, maintain an awareness of opportunities, and integrate diverse perspec-
tives at community, societal, and global levels.

Fourth, developing and sustaining intellectual capital through networks (ICN)
involves understanding how tools, media, and social networks operate and using
appropriate techniques through these resources to build collective intelligence and
integrate new insights into personal understandings.

Using the four principles described above, assessments were designed to clearly
align with learning goals through these constructs, to produce valid and reliable
evidence of what students know and can do for the development perspective, and to
generate evidence useful to teachers and students.

One potential mechanism to achieve these goals is to model assessment practice
through a set of exemplary classroom materials. The example module here was
developed based on using some of the “Go North!” expedition findings, originally
posted as a K-12 virtual project by the University of Minnesota and partners. While
no materials from the site were actually brought into the assessments shown here,
students were allowed to use navigation links available through their browsers to
view some of the scientific expedition materials. This was an example of using
publicly available online resources to access a range of rich materials in the class-
room. The website was developed at the University of Minnesota in collaboration
with NOMADS Online Classroom Expeditions, GoNorth! This online adventure
learning project was based around arctic environmental expeditions. The website
was a learning hub with a broad range of information and different mechanisms to
support networking with students, teachers, and experts.

ICT literacy resources developed relating to this module focus mainly on the
functioning as a consumer in networks strand. The tour through the site for the
ATC21S demonstration scenario is conceived as a “collaboration contest” or virtual
treasure hunt (see Fig. 3 for a sample screen). The Arctic Trek scenario views social
networks through ICT as an aggregation of different tools, resources, and people that
together build community in areas of interest. In this task, students in small teams
ponder tools and approaches to unravel clues through the Go North site, via touring
scientific and mathematic expeditions of actual scientists.

The Arctic Trek task in which students work in teams is demonstrated in Figs. 4
and 5. In that task, students are expected to find the colors that are used to describe
the bear population in the table, part of which is shown at the top. The highlighted
chat log of students at the bottom of the figure, which actually takes the form of a
collaborative laboratory notebook, indicates that students are communicating in
order to identify signal versus noise in the supplied information. The colors in the
text are the colors shown in the columns on the right of the table. Requiring both
identifying signal versus noise in information and interrogating data for meaning,
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this performance can be mapped into the ICN3 level (“Proficient builder”) of the
ICN strand (Wilson & Scalise, 2014). For further examples of activities and items
from the Arctic Trek scenario, see Wilson and Scalise (2014).

For this example, the connection at the intersection of measurement science and
learning analytics can be made in two ways. First, the statistical analytic technique
used to compile scores in measurement science is called a “measurement model.” It
serves as an algorithm to gather the results together and make inferences about
learners. Other fields such as computer science that come to learning analytics from

Fig. 3 ATC21S Arctic Trek math and science task opening screen

Fig. 4 Example of student collaborative chat in Arctic Trek task
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a different historical basis often use a different vocabulary to describe such
algorithms. For instance, the Rasch model often used in educational assessment
from a computer science perspective would be considered an LA algorithm
employing a multilayer feed-forward network (Russell & Norvig, 2009) with
g as the Rasch function (a semi-linear or sigmoidal curve-fitting function), in
which weights (item discrimination) are constrained to one for all inputs, and the
item parameters estimated are only the thresholds on each item node (item diffi-
culty). The 2PL IRT model, by contrast, is an algorithm employing a multilayer
feed-forward network with g as the 2PL function (also a sigmoidal curve-fitting
function), in which both weights (item discrimination) and thresholds on each item
node (item difficulty) are estimated. In a further example of a commonly used
measurement model, the 3PL model is an algorithm employing a multilayer feed-
forward network with g as the 3PL function (sigmoidal), in which weights (item
discrimination), thresholds on each item node (item difficulty), and a lower
asymptote (guessing parameter) are estimated.

Secondly, the point we want to illustrate in this chapter is that additional specific
learning analytics tools can be added or embedded within the traditional measure-
ment model. Here we show an example of such embedding through an automated
scoring engine. Scores produced by a scoring engine can be incorporated into a data
set to be treated by a measurement model. To exemplify this, some of the complex
student work products from the Arctic Trek module were treated under a learning
analytics approach called “sentiment analysis.” This involves predictions of team
success in the collaborative notebooks.

Fig. 5 Sentiment analysis design window for ATC21S example
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For this example, some notebooks to be used for a training set of the LA engine
were first scored by handscoring, using traditional tools such as rubrics and exem-
plars. A set of 28 handscored notebooks, which were work products for approxi-
mately 112 students, provided this training set. The training set was then made
available to RapidMiner (Hoffman & Klinkenberg 2013) for the LA sentiment
analysis approach.

Sentiment analysis in RapidMiner is an LA technique intended to extract infor-
mation from large full-text data sources such as online reviews and social media
discussions. It is often used to interpret and optimize what is being thought, said, or
discussed about a company or its products – or in this case, what is being discussed
in a collaborative learning situation for a science and mathematics learning activity.

The basic approach in sentiment analysis is to classify an expressed opinion in a
document, a sentence, or an entity feature as positive or negative. In this case,
“positive” means that the notebook shows some good evidence of learning in
networks, based on the construct ideas described above. To calibrate the engine,
first, both positive and negative “reviews” of the task results are considered – or in
other words, a training set of scored collaborative notebooks are provided to the
engine.

For the engine, first all of the words are stemmed into root words. Then, a vector
word list and a model are created. Using the training set, the model compares each
word in the given notebook being considered with that of words that come under
different predictions stored earlier. The notebook prediction is estimated based on
the majority of words that occur under a polarity or a trend direction toward a
negative or positive prediction. In this way, sentiment analysis is a “bag of words”
artificial intelligence technique (Russell & Norvig, 2009). More sophistication can
be added to the sentiment analysis data mining engine to include a variety of
relationships between words, if desired, and data adjustments such as spelling
corrections, “blacklists,” and “whitelists” that are addendums or eliminations from
the data dictionary, and so forth. Here, an example of the sentiment analysis design
window shows in Fig. 5.

The components of the full analysis for the Arctic Trek sentiment analysis engine
used here are shown in Fig. 6.

For this project, following the establishment of the training set, four additional
collaborative notebooks were added to the work product data set for the sentiment
analysis. These additional notebooks did not associate a prediction for the sentiment
analysis a priori. Rather the goal was for the LA engine to generate the prediction for
each of the four notebooks. However, the four notebooks were handscored in
advance using the same human scoring approaches as for the other notebooks. The
point was to see if the LA engine could match and even potentially add to the results
generated by the handscoring.

If so, this would provide some evidence that an LA sentiment analysis engine
(in this case, via RapidMiner) might effectively be incorporated into the measure-
ment science approach here. This could help to satisfy the measurement principle of
usability by teachers and students, since an effective LA engine might eliminate
some of the extensive handscoring. Then, use of the complex and interesting
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learning activities in the classroom could be much more possible and practical for
teachers and students. Using such digital assessment tasks to generate measurement
evidence as well as provide an effective classroom activity might require such tools
for teachers.

The four notebooks selected represented a small but purposive sample for the
engine to score. Only one notebook was high scoring according to the human rating.
A second low-scoring notebook illustrated a similar text complexity but without
nearly as much substantively correct information and with few patterns of collabo-
ration incorporated. Two additional notebooks represented sparser incorrect ver-
sions, with little or no evidence of effective learning in networks practices, based
on the construct ideas described above. All notebooks were supplied to the engine in
their native formats, without editing or correction for any of the attributes of the
student work.

One caveat for limitations that should be noted in advance of reporting the results
is that this is a very small data set for most purposes but can serve for an illustrative
example, and a larger set would be needed to provide a more formal example. Thus,
this example should not be considered conclusive evidence of the sentiment engine
here as being effective or ineffective for such purposes. Rather it should be consid-
ered illustrative of the larger topic, the potential intersection of measurement science
and learning analytics. Collaborative data sets with teams of four yield fewer unique
work products than in individual assessments. A larger data set of 150–175 note-
books, or therefore about 600–900 students if composed of collaborative teams of
four students per notebook, would be more desirable for training an engine. Fur-
thermore, the reader should note that if larger live action collaborative data sets were
available, other algorithms might be more desirable (Chi et al., 2008; Pirolli, 2007,
2009; Pirolli, Preece, & Shneiderman, 2010; Pirolli & Wilson, 1998).

A brief example of the results of the sentiment analysis is shown in Table 1.
Results show that the LA sentiment engine in this case was able to rank the four
notebooks in the same order as the handscoring did. The high-scoring notebook was
rated considerably higher than the next ranked notebook, even though text com-
plexity between the two work products was similar. Furthermore, the LA engine

Fig. 6 Sentiment analysis component elements for LA engine in Arctic Trek
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seemed also able to do a reasonable job of awarding a type of “partial credit,”
establishing a score substantially higher for the top notebook, but also ranking the
next notebook somewhat higher than the other two, as had been the case for the
human ratings. The notes in the handscore ranking column provide some interpretive
context for teachers and students and could be applied to the LA results as well and
mapped to the construct information described above.

How Findings Could Improve or Inform Teaching

For many teachers, the idea of teaching twenty-first-century standards such as digital
collaboration is challenging (Partnership for 21st Century Skills & American Associa-
tion of Colleges of Teacher Education, 2010; Scalise, 2016; Schrum & Levin, 2014).
Teachers can help students be more successful in both their tools for working and ways
of working digitally, but to do so, schools must have ways, means, and opportunities to
help students master working in digital collaboration (Binkley et al., 2012; Griffin,
McGaw, & Care, 2012). Digital literacy skills include social and intellectual capital,
which are needed for virtual collaboration when the goal is learning in networks
(Wilson, Scalise, & Gochyyev, in press). Yet these goals and objectives are not yet
built into most educational systems, curricular materials, or approaches that teachers
learn in professional development to support student learning.

Here, helping educators understand what a successful performance looks like in a
collaborative digital space is important to improve teaching, if the improvement of
twenty-first-century skills such as digital collaboration for learning in social net-
works is a goal. Furthermore, providing tools at the intersection of measurement
science and LA, as described here, helps to inform teaching so that teachers know
how such skills can be effectively assessed and whether and how students should be
expected to improve over time.

Table 1 Sentiment analysis results for Arctic Trek four notebooks

Notebook ID
number

Sentiment
ranking
(pos/neg)

RapidMiner
“score” Handscore ranking

A (original
case number
32)

Positive 78.0 1 (only notebook of the four judged as high-
scoring, illustrated strong elements of
collaboration)

B (original
case number
11)

Negative 46.0 2 (low-scoring notebook but with some
beginner elements of collaboration, text
complexity similar to notebook A above)

C (original
case number
14)

Negative 39.0 3 ties (low-scoring notebook, few if any
relevant elements of collaboration visible)

D (original
case number
13)

Negative 35.0 3 ties (low-scoring notebook, few if any
relevant elements of collaboration visible)
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Instructors have considerable experience recognizing more traditional work
products in the classroom, but sometimes don’t know if they can effectively recog-
nize increasing student proficiency in an area such as digital collaboration. They
haven’t seen many examples, and they have few assessment tools to formally
support the new learning environments. Together, LA and measurement science
could make large contributions to teacher efforts in supporting complex twenty-first-
century skills for students. Such approaches can allow teachers to have high-quality
use of evidence without reducing or impoverishing the objectives or student expe-
rience in hard-to-measure constructs (K. Scalise, 2012). Furthermore, new types of
feedback and enhanced feedback can be provided (Timms, 2016; Timms, DeVelle, &
Schwanter, 2015).

One key topic that teachers specifically ponder in digital collaboration is how to
effectively evaluate collaborative work in an online setting (McFarlane, 2003). They
often feel they are good at evaluating work products in their subject matter areas, for
instance, they can “grade” and provide feedback for language, math, or science
competencies in a given assignment. But what factors might they tap as indicators of
growing student proficiency (Wilson et al., 2012) in collaborative online digital
literacy more generally? Without some indicators, it can be difficult for teachers to
gauge how they are helping students improve in this type of educational practice.
Working together at the intersection of LA and measurement science can provide
new ways to help improve and inform teaching. This is true especially when the
learning goal or learning products are not simple or traditional.

Conclusion and Next Steps

The proceeding descriptions and example review the current state of play in the area
of overlap between learning analytics (LA), specifically data mining and exploratory
analytics, and the field of measurement science. The logic of measurement science
was reviewed briefly, definitions for LA introduced and extended slightly, and a brief
example given showing how the two approaches can support and complement one
another.

Next, we summarize some thoughts on what measurement can learn from LA,
what LA can learn from measurement, and what the two fields must now do together,
to realize the potential of the intersection.

What measurement can learn from LA. Learning analytics has shown a
fearlessness in taking advantage of the new sources and large scope of data that
have become available in the digital age. As well as hugely expanding the types and
volume of data available to education, this has opened entirely new possibilities that
simply did not exist before, from moment-to-moment data collection in educational
settings, to detailed observations of interactive settings such as one-on-one conver-
sations and classroom discussions, to the representation as complex data of objects
that were previously not available, to quantitative analysis such as syntactic and
content representations of document, student products, and so forth.
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But it is not only the collection of data that is being revolutionized, it is the speed
and possibility of feedback that opens up significant possibilities for education. No
longer do educators have to wait for the “back-room experts” to spend weeks
(or months) analyzing the data and preparing reports. They can obtain virtually
instantaneous feedback once the student has responded. In our judgment, it is this
that holds the greatest promise. The impact of classroom assessment on student
success has been well documented in a conclusive meta-analysis (Black & Wiliam,
1998). But this impact has had little to do with measurement in the past as the
classroom environment was too ephemeral for the “slow and serious” pace of
traditional educational measurement. Measurement has, partly by virtue of its
usual funding sources (policy-level decision-makers) and partly due to the lack of
appropriate technology as noted above, been focused on large-scale samples of
rather slim amounts of data for each sample student. This has proven useful for
administrative and program evaluation purposes, but largely skipped over the most
important site of educational change and improvement.

In addition, we agree with our colleague Bob Mislevy (2016) who has explained
that while early measurement scientists often had a strong domain grounding in what
they were trying to measure (e.g., psychologists trying to measure psychological
traits concerning which they were pioneering experts), measurement science became
its own specialty, and much of the domain expertise has been lost directly by the
psychometricians. In contrast, LA researchers have built strong, distributed teams
that bring that expertise back into play in ways that measurement science can learn
from. They can tackle much more complex work products and data streams, but only
because they pay a lot of attention to having actual educational professionals and
domain analysts for the given area of interest working with them closely.

What LA can learn from measurement. The discussion above provides several
aspects of the strength of the measurement approach as a framework for LA. First,
every time that someone interprets LA results pertaining to student performance,
they are making certain assumptions. Over many years, and across a wide range of
contexts, the nature of these assumptions has been considered and contested with the
domain of the science of measurement. Above, we have emphasized the importance
of having a scientific theory that is the basis for the interpretation of the results – the
construct map in the context of the BAS (although, of course, there could be many
other such bases). Equally, there needs to be an understanding of how the actual data
sources relate back to this scientific theory (this was embodied in the items design
and the outcome space in the BAS). And, in order to have some means to appreciate
the way that the accumulated evidence might relate to the hypothesized scientific
construct, it is essential to have a statistical model for estimation and for uncertainty
evaluation (which is one aspect of the measurement model in the BAS).

In addition, quality control considerations need to be invoked, and these are
expressed in the measurement approach through concepts such as validity and
reliability evidence (e.g., AERA/APA/NCME 2014), which summarize the grounds
on which one can be assured that the interpretations one would like to make of the
LA results are indeed valid. No amount of data, frequency of responses, nor novelty
of data format will reduce the need for these issues to be considered and responded
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to. Ignoring this need may be possible at the initial stages of implementation, but
long practice in many different domains has told us that such willful ignorance is
fraught with risk, not just for the learning analysts but also for the students and
teachers who rely on them.

What LA and measurement can do together. Perhaps even more important
than that the two disciplines learn from one another is that they need to work
together. Our example above has been intended to show some of the complemen-
tarities that exist between the two approaches, and our principal arguments above are
not based on any necessary oppositions between the two, but rather on how they can
be seen to offer ways that each can extend the other.

Looking back over our chapter, we see that new research directions at the
intersection of LA and measurement science have been prompted by our discussions.
First, in thinking about how interactions with LA can improve and expand measure-
ment science, we noted the following possibilities. Measurement science needs to
adapt to the important new directions and possibilities that LA affords with respect to
the gathering of new types of data relating to student behaviors beyond the standard
measurement science formats of the test and the questionnaire/survey to incorporate
not just student “answers” but also their many steps and actions toward those
answers. Measurement science also needs to welcome the invigoratingly broader
horizon of being able to examine the entire time of student educational experiences,
not just a single event in a single classroom in a single year, but by having access to
the whole range of operational data that will be available regarding students. The
very size of LA data sets is also a challenge to standard measurement science – the
typical techniques of statistical analysis will have to give way to more flexible and
fast algorithms and means of communicating results.

Second, thinking about how interactions with measurement science can improve
and expand LA, we came up with the following possibilities. One possibility will, of
course, include new LA algorithms and aggregation approaches. These are likely to
be situated in data density – but they will also rely on more pattern finding and likely
noisier patterns, with more construct irrelevant variance, included in less structured
but larger data sets. A good direction for assessing efficacious algorithms and
methods of classification and feedback, specifically for educational applications,
will be to search for methods that add to the explained variance of models already
employed in measurement science. As LA matures to focus not only on predictive
validity but also to the establishment of well-accepted procedures for quality and
measurement standards, new research directions will emerge in the science of LA
assessment. These include technical studies and simulations to understand and
address reliability and precision information for LA, assessment form creation,
linking and equating, adaptive administrations, evaluating assumptions, and
checking data-model fit. Furthermore, as LA opens up more opportunities for rich
assessment of hard-to-measure constructs that are instructionally relevant, the inter-
pretive focus of LA becomes more prominent. LAwill need to add perspectives and
practices regarding validity evidence for the interpretations of LA results: Measure-
ment science has had 100 years of experience in this, and it will be much more
efficient for LA to learn from that than to repeat those 100 years
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Thinking from both sides, an important terrain of research directions emerges
related to improving and informing instruction. Research questions to be asked
include how and whether teaching and feedback opportunities can enrich student
learning outcomes and whether they can address that need for all students, including
disadvantaged students. Technology can help to level the playing and close achieve-
ment gaps – but it can also further marginalize some populations

Thus there is a need for new R&D projects that combine the two approaches
together. This must provide wide dissemination of outcomes in order to reach the
widely distributed fields of application, which often do not share the same source
materials. Joint publication of books that combine the approaches and synthesize
approaches would be helpful. Finally, training programs are needed that combine the
two, both for graduate students and for working professionals and academics.

To sum up, as we enter a new age of digitally extended data collection, we need to
match the fearlessness of LAwith the strength and reassurance of measurement science.
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